Тематические порталы ИД "Русский врач": Аллергология, Гастроэнтерология, Геронтология, Гинекология, Кардиология, Педиатрия, Неврология, Травматология, Эндокринология, Эпидемиология
 
     


Конкурсы и гранты
 

Переломы и остеопороз после инсульта: время подумать о защите
Автор: Шишкова В.   

 

magazine-vrach-2013-03-002

Переломы и остеопороз после инсульта: время подумать о защите

Остеопороз и инсульт – важнейшие факторы риска перелома шейки бедра. Большинство переломов у пациентов, перенесших инсульт, происходит на стороне парезов и параличей, и чаще всего – в результате падения. Предотвращение таких осложнений должно быть приоритетным в стратегии ведения пациентов, находящихся в периоде реабилитации после инсульта.
Poststroke fractures and osteoporosis: it is time to think about protection
Osteoporosis and stroke are the most important risk factors for femoral neck fracture. Most fractures in post-stroke patients occur on the side of paresis and paralysis and more frequently due to a fall. To prevent such complications must be a management strategic priority for patients during poststroke rehabilitation.

 

Литература

1.World Health Organization: The Global Burden of Disease. 2004 update.

2.Фейгин В., Виберс Д., Браун Р. Инсульт. Клин. рук-во / М.: Бином, СПб.:Диалект, 2005.

3.European Stroke Organisation (ESO) Executive Committee; ESO Writing Committee. Guidelines for management of ischaemic stroke and transient ischaemic attack // Cerebrovasc. Dis. – 2008; 25: 457–507.

4.Смертность населения Российской Федерации, 1998 г. Стат. мат-лы / М.: Минздрав РФ, 2006; 36.

5.Гусев Е.И., Скворцова В.И., Стаховская Л.В. Проблема инсульта в Российской Федерации: время активных совместных действий // Журн. неврол. и психиат. – 2007; 8: 4–10.

6.Peszczynski M. The fractured hip in hemiplegic patients // Geriatrics. – 1957; 12: 687–90.

7.Ramnemark A., Nyberg L., Borssen B. et al. Fractures after stroke // Osteoporos. Int. – 1998; 8: 92–5.

8.Ramnemark A., Nilsson M., Borssen B. et al. Stroke, a major and increasing risk factor for femoral neck fracture // Stroke. – 2000; 31: 1572–7.

9.Kanis J., Oden A., Johnell O. Acute and long-term increase in fracture risk after hospitalization for stroke // Stroke. – 2001; 32:702–6.

10.Dennis M., Lo K., McDowall M. et al. Fractures after stroke: frequency, types, and associations // Stroke. – 2002; 33: 728–34.

11.Ramnemark A., Nyberg L., Borssen B. et al. Fractures after stroke // Osteoporos. Int. – 1998; 8: 92–5.

12.Nevitt M., Cummings S. Type of fall and risk of hip and wrist fractures: the study of osteoporotic fractures // J. Am. Geriatr. Soc. – 1993; 41: 1226–34.

13.Forster A., Young J. Incidence and consequences of falls due to stroke: asystematic inquiry // BMJ. – 1995; 311: 83–6.

14.Chiu K., Pun W., Luk K. et al. A prospective study on hip fractures in patients with previous cerebrovascular accidents // Injury. – 1992; 23: 297–99.

15.Bonita R. Epidemiology of stroke // Lancet. – 1992; 339: 342–44.

16.Jorgensen L., Engstad T., Jacobsen B. Bone mineral density in acute stroke patients: low bone mineral density may predict first stroke in women // Stroke. – 2001; 32: 47–51.

17.Ramnemark A., Nyberg L., Lorentzon R. et al. Progressivehemiosteoporosis on the paretic side and increased bone mineraldensity in the nonparetic arm the first year after severe stroke // Osteoporos. Int. – 1999; 9: 269–75.

18.Prince R., Price R., Ho S. Forearm bone loss in hemiplegia: a model forthe study of immobilization osteoporosis // J. Bone Miner. Res. – 1988; 3: 305–10.

19.Jorgensen L., Jacobsen B., Wilsgaard T. et al. Walking afterstroke: does it matter? Changes in bone mineral density within the first 12months after stroke: a longitudinal study // Osteoporos. Int. – 2000; 11: 381–7.

20.Jorgensen L., Crabtree N., Reeve J. et al. Ambulatory level andasymmetrical weight bearing after stroke affects bone loss in the upperand lower part of the femoral neck differently: bone adaptation afterdecreased mechanical loading // Bone. – 2000; 27: 701–7.

21.Hamdy R., Krishnaswamy G., Cancellaro V. et al. Changes in bone mineral content and density after stroke // Am. J. Phys. Med. Rehabil. – 1993; 72: 188–91.

22.Del Puente A., Pappone N., Mandes M. et al. Determinants of bone mineral density in immobilization: a study onhemiplegic patients // Osteoporos. Int. – 1996; 6: 50–4.

23.Sato Y., Maruoka H., Honda Y. et al. Developmentof osteopenia in the hemiplegic finger in patients with stroke // Eur. Neurol. – 1996; 36: 278–83.

24.Compston J., Cooper C., Kanis J. Bone densitometry in clinical practice // BMJ. – 1995; 310: 1507–10.

25.Marshall D., Johnell O., Wedel H. Meta-analysis of how well measures of bone mineral density predict occurrence of osteoporotic fractures // BMJ. – 1996; 312: 1254–9.

26.Ensrud K., Palermo L., Black D. et al. Hip and calcaneal bone loss increase withadvancing age: longitudinal results from the study of osteoporotic fractures // J. Bone Miner. Res. – 1995; 10: 1778–87.

27.Jones G., Nguyen T., Sambrook P. et al. Progressive loss of bone in the femoral neck in elderly people: longitudinal findings from the Dubbo osteoporosis epidemiology study // BMJ. – 1994; 309: 691–5.

28.Brown S., Rosen C. Osteoporosis // Med. Clin. North. Am. – 2003; 87: 1039–63.

29.Sato Y., Fujimatsu Y., Kikuyama M. et al. nfluence ofimmobilization on bone mass and bone metabolism in hemiplegic elderlypatients with a long-standing stroke // J. Neurol. Sci. – 1998; 156: 205–10.

30.Sato Y. Abnormal bone and calcium metabolism in patients after stroke // Arch. Phys. Med. Rehabil. – 2000; 81: 117–21.

31.Hamdy R., Moore S., Cancellaro V. et al. Long-term effectsof strokes on bone mass // Am. J. Phys. Med. Rehabil. – 1995; 74: 351–6.

32.Sato Y., Kuno H., Kaji M. et al. Increased bone resorption during the first year after stroke // Stroke. – 1998; 29: 1373–7.

33.Zerwekh J., Ruml L., Gottschalk F. et al. The effects of twelve weeks of bed rest on bone histology, biochemical markers of bone turnover, and calcium homeostasis in eleven normal subjects // J. Bone Miner. Res. – 1998; 13: 1594–601.

34.Arnaud S., Sherrard D., Maloney N. et al. Effects of 1-week head-down tilt bed rest on bone formation and the calcium endocrine system // Aviat. Space Env. Med. – 1992; 63: 14–20.

35.Minaire P., Depassio J., Berard E. et al. Effects of clodronate on immobilization bone loss // Bone. – 1987; 8: 63–8.

36.Chantraine A., Nusgens B., Lapiere C. Bone remodeling during the development of osteoporosis in paraplegia // Calcif. Tis. Int. – 1986; 38: 323–7.

37.Sato Y., Maruoka H., Oizumi K. et al. Vitamin D deficiency and osteopenia in the hemiplegic limbs of stroke patients // Stroke. – 1996; 27: 2183–7.

38.Sato Y., Oizumi K., Kuno H. et al. Effect of immobilization upon renal synthesis of 1,25-dihydroxyvitamin D in disabled elderly stroke patients // Bone. – 1999; 24: 271–5.

39.Sato Y., Kuno H., Asoh T. et al. Effect of immobilization on vitamin D status and bone mass in chronically hospitalized disabled stroke patients // Age Ageing. – 1999; 28: 265–9.

40.Sato Y., Honda Y., Kunoh H. et al. Long-term oral anticoagulation reduces bone mass in patients with previous hemispheric infarction and nonrheumatic atrial fibrillation // Stroke. – 1997; 28: 2390–4.

41.Ahdjoudj S., Lasmoles F., Holy X. et al. Transforming growth factor 2 inhibits adipocyte differentiation induced by skeletal unloading in rat bone marrow stroma // J. Bone Miner. Res. – 2002; 17 (5): 668–77.

42.Manolagas S. Birth and death of bonecells: basic regulatory mechanisms and implications for the pathogenesis and treatment of osteoporosis // Endocr. Rev. – 2000; 21: 115–37.

43.Meunier P., Aaron J., Edouard C. et al. Osteoporosis and the replacement of cell populations of the marrow by adipose tissue // Clin. Orthop. – 1971; 80: 147–54.

44.Rozman C., Feliu E., Berga L. et al. Age-related variations of fat tissue fraction in normal human bone marrow depend both on size and number of adipocytes: a stereological study // Exp. Hematol. – 1989; 17 (1): 34–7.

45.Justesen J., Stenderup K., Ebbesen E. et al. Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis // Biogerontol. – 2001; 2 (3): 165–71.

46.Verma S., Rajaratnam J., Denton J. et al. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis // J. Clin. Pathol. – 2002; 55 (9): 693–8.

47.Yeung D., Griffith J., Antonio G. et al. Osteoporosis is associated with increased marrow fat content and decreased marrow fat unsaturation: a proton MR spectroscopy study // J. Magn. Reson. Imaging. – 2005; 22 (2): 279–85.

48.Sekiya I., Larson B., Vuoristo J. et al. Adipogenic differentiation of human adult stem cells from bone marrow stroma (MSCs) // J. Bone Miner. Res. – 2004; 19 (2): 256–64.

49.Rodriguez J., Montecinos L., Ríos S. et al. Mesenchymal stem cells from osteoporotic patients produce a type I collagen-deficient extracellular matrix favoring adipogenic differentiation // J. Cell Biochem. – 2000; 79 (4): 557–65.

50.Шишкова В.Н. Ожирение и остеопороз // Остеопороз и остеопат. – 2011; 1: 2–7.

51.Minaire P., Berard E., Meunier P. et al. Effects of disodium dichloromethylenediphosphonate on bone loss inparaplegic patients // J. Clin. Invest. – 1981; 68: 1086–92.

52.Plosker G., Goa K. Clodronate: a review of its pharmacological properties and therapeutic efficacy in resorptive bone disease // Drugs. – 1994; 47: 945–82.

53.Grigoriev A., Morukov B., Oganov V. et al. Effect of exercise and bisphosphonate on mineral balance and bone density during 360 day antiorthostatichypokinesia // J. Bone Miner. Res. – 1992; 7 (Suppl 2): 449–55.

54.Chappard D., Alexandre C., Palle S. et al. Effects of a bisphosphonate (1-hydroxy ethylidene-1,1 bisphosphonic acid) on osteoclast number during prolonged bed rest in healthy humans // Metabolism. – 1989; 38: 822–5.

55.Gimble J., Zvonic S., Floyd Z. et al. Playing with bone and fat // J. Cell Biochem. – 2006; 98: 251–66.

56.Khan A., Khan A. Anabolic agents: A new chapter in the management of osteoporosis // J. Obstet. Gynaecol. Can. – 2006; 28 (2): 136–41.

57.Plotkin L., Aguirre J., Kousteni S. et al. Bisphosphonates and estrogens inhibit osteocyte apoptosis via distinct molecular mechanisms downstream of extracellular signal-regulated kinase activation // J. Biol. Chem. – 2005; 280 (8): 7317–25.

58.Russell R. Bisphosphonates: From bench to bedside // Ann. N. Y. Acad. Sci. – 2006; 1068: 367–401.

59.Chavassieux P., Arlot M., Reda C. et al. Histomorphometric assessment of the long-term effects of alendronate on bone quality and remodeling in patients with osteoporosis // J. Clin. Invest. – 1997; 100 (6): 1475–80.

60.Balena R., Toolan B., Shea M. et al. The effects of 2-year treatment with the aminobisphosphonatealendronate on bone metabolism, bone histomorphometry, and bone strength in ovariectomized nonhuman primates // J. Clin. Invest. – 1993; 92 (6): 2577–86.

61.Still K., Phipps R., Scutt A. Effects of risedronate, alendronate, and etidronate on the viability and activity of rat bone marrow stromal cells in vitro // Calcif. Tis. Int. – 2003; 72 (2): 143–50.

62.Im G., Qureshi S., Kenney J. et al. Osteoblast proliferation and maturation by bisphosphonates // Biomaterials. – 2004; 25: 4105–15.

63.Duque G., Rivas D. Alendronate has an anabolic effect on bone through the differentiation of mesenchymal stem cells // J. Bone Miner. Res. – 2007; 22: 1603–11.

64.Riggs B., Melton L. III. Clinical review 8: Clinical heterogeneity of osteoporosis: implications for preventive therapy // J. Clin. Endocrinol. Metab. – 1990; 70: 1229–32.

65.Chapuy M., Arlot M., Duboeuf F. et al. Vitamin D3 and calcium to prevent hip fractures in elderly women // N. Engl. J. Med. – 1992; 327: 1637–42.

66.Bischoff-Ferrari H., Willett W., Wong J. et al. Fracture prevention with vitamin D supplementation: A meta-analysis of randomized controlled trials // JAMA. – 2005; 293: 2257–64.

67. Pols H., Felsenberg D., Hanley D. et al. Multinational, placebo-controlled, rindomized trial of the effects of alendronate on bone density and fracture risk in postmenopausal women with low bone mass: results of the FOSIT study. Fosamax International Trial Study Group // Osteoporos. Int. – 1999; 9: 461–8.

68.Black D., Thompson D., Bauer D. et al. Fracture risk reduction with alendronate in women with osteoporosis: the fracture intervention trial. Fit research group // J. Clin. Endocrinol. Metab. – 2000; 85: 4118–24.

69.Bone H., Hosking D., Devogelaer J. et al. Ten year's experience with alendronate for osteoporosis in postmenopausal women // N. Engl. J. Med. – 2004; 350: 1189–99.

70.Рожинская Л.Я., Дзеранова Л.К., Марова Е.И. и др. Результаты лечения постменопаузального остеопороза бисфосфонатомфосамаксом (алендронатом) // Остеопороз и остеопат. – 1998; 2: 28–32.

71.Скрипникова И.А., Косматова О.В. Результаты длительного лечения постменопаузального остеопороза бисфосфонатом – фосамаксом // Остеопороз и остеопат. – 2004; 1: 16–9.

72.Баркова Т.В., Беневоленская Л.И., Бакулин А.В. Изучение эффективности и переносимости препарата фосамакс у женщин с постменопаузальным остеопорозом по сравнению с плацебо // Остеопороз и остеопат. – 1998; 2: 33–6.

 

 
Рассылка
Важно

→ Фармакопейные статьи


→ Медицинские архивы на службе современного врача


→ Перечень медицинских технологий

ЭКД архив

 

Баннер
Баннер
Баннер
Информационные партнеры:
Баннер
Баннер
Баннер
Баннер
Баннер
Баннер
Баннер
Баннер
Баннер
Баннер
Баннер
Баннер